Network Enhancers - "Delivering Beyond Boundaries" Headline Animator

Showing posts with label wireless. Show all posts
Showing posts with label wireless. Show all posts

Sunday, January 10, 2016

3 Useful Wireless Technologies You Should Know About



Most of you are intimately familiar with the popular short-range wireless technologies such as Wi-Fi, Bluetooth, ZigBee, 802.15.4, and maybe even Z-Wave. All of these are addressing the Internet-of-Things (IoT) movement. But there are other, lesser-known technologies worth considering. I have identified three that justify a closer look, especially if longer range is a requirement: These are LoRaSigfox, and Weightless.

All of these are relatively new and solve the range problem for some IoT or Machine-to-Machine (M2M) applications. These technologies operate in the <1 a="" always="" for="" frequencies="" ghz="" give="" given="" level="" longer="" lower="" nbsp="" p="" power="" range="" spectrum.="" unlicensed="">
Wireless
thanks to the physics of radio waves. Where most shorter-range technologies fizzle out beyond about 10 meters, these newer technologies are good up to several miles or so.

Up until now, cellular connections have been used to implement M2M or IoT monitoring and control applications with a range greater than several hundred meters. Most cellular operators offer an M2M service, and multiple cell phone module makers can provide the hardware. But because of the technical complexity and high cost, cellular is not the best solution for a simple monitoring or control application.
These newer technologies offer the range needed at lower cost and significantly lower power consumption. This new category is known now as low power wide area networks (LPWANs). These are beginning to emerge as a significant competitor to cellular in the IoT/M2M space. Recent investigation by Beecham Research predicts that by 2020 as much as 26% of IoT/M2M coverage will be by LPWAN.

LoRa

LoRa stands for long-range radio. This technology is a product of Semtech. Typical operating frequencies are 915 MHz for the U.S., 868 MHz for Europe, and 433 MHz for Asia. The LoRa physical layer (PHY) uses a unique form of FM chirp spread spectrum, along with forward error correction (FEC), allowing it to demodulate signals 20 to 30 dB below the noise level. This gives it a huge link budget with a 20- to 30-dB advantage over a typical FSK system.
The spread spectrum modulation permits multiple radios to use the same band if each radio uses a different chirp and data rate. Data rates range from 0.03kb/s to 37.5 kb/s. Transmitter power level is 20 dBm. Typical range is 2 to 5 km, and up to 15 km is possible depending upon the location and antenna characteristics.
The media-access-control (MAC) layer is called LoRaWAN. It is IPv6 compatible. The basic topology is a star where multiple end points communicate with a single gateway, which provides the backhaul to the Internet. Maximum payload in a packet is 256 bytes. A CRC is used for error detection. Several levels of security (EUI64 and EUI128) are used to provide security. Low power consumption is a key feature.

Sigfox

Sigfox is a French company offering its wireless technology, as well as a local LPWAN for longer-range IoT or M2M applications. It operates in the 902-MHz ISM band but consumes very little bandwidth or power. Sigfox radios use a controversial technique called ultranarrowband (UNB) modulation. UNB is a variation of BPSK and supposedly produces no sidebands if zero or negative group delay filters are use in implementation. It uses only low data rates to transmit short messages occasionally. For example, Sigfox has a maximum payload separate from the node address of 12 b. A node can send no more than 140 messages per day. This makes Sigfox ideal for simple applications such as energy metering, alarms, or other basic sensor applications. Sigfox can set up a local LPWAN, then charge a low rate for a service subscription.

Weightless

Weightless is an open-LPWAN standard and technology for IoT and M2M applications. It is sponsored by the Weightless SIG and is available in several versions. The original version, Weightless-W, was designed to use the TV white spaces or unused TV channels from 54 to 698 MHz. Channels are 6-MHz wide in the U.S. and 8-MHz wide in Europe. These channels are ideal to support long range and non-line of sight transmission. The standard employs cognitive radio technology to ensure no interference to local TV signals. The basestation queries a database to see what channels are available locally for data transmission. Modulation can be simple differential BPSK up to 16 QAM with frequency hopping spread spectrum supporting data rates from about 1 kb/s to 16 Mb/s. Duplexing is time-division (TDD). Typical maximum range is about 5 to 10 km.
Weightless-N is a simpler version using DBPSK for very narrow bands to support lower data rates. Weightless-P is a newer, more robust version using either GMSK or offset-QPSK modulation. Data rates can be up to 100 kb/s using 12.5 kHz channels. Both the N and P versions work in the standard <1ghz all="" and="" authentication="" bands.="" encryption="" for="" incorporate="" ism="" p="" security.="" versions="">

Other LPWAN Options

The three technologies listed above will probably dominate LPWAN applications, but there are a few other choices. One is a variation of Wi-Fi designated by the IEEE as standard 802.11af. It was designed to operate in the TV white spaces with 6 or 8 MHz channels. The modulation is OFDM using BPSK, QPSK, 16QAM, 64QAM or 256QAM. The maximum data rate per 6-MHz channel is about 24 Mb/s. Up to four channels can be bonded to get higher rates. Data base query is part of the protocol to identify useable local channels.
A forthcoming variation is 802.11ah, a non-white space <1ghz 2016.="" addresses="" applications.="" available="" bands="" be="" consumption="" expected="" for="" in="" is="" ism="" issue="" it="" low="" p="" power="" simpler="" speed="" the="" to="" version="" wi-fi="">
Another IEEE standard identified for possible LPWAN is 802.22. This is another OFDM standard that has been around for years. Since 802.11af /ah and 802.22 use OFDM, their power consumption make them less desirable for low power applications. Their main advantage may be the higher data rates possible.



Saturday, January 9, 2016

Examining The Future Of WiFi: 802.11ah, 802.11ad (& Others)



In just 15 years, WiFi has evolved from sluggish connections to an incredibly versatile connective technology. And because it plays an integral role in the lives of hundreds of millions of people, it is being improved almost constantly. But what are those big changes? And what will these new technologies bring about in upcoming years? Consumers and companies are looking for two things in particular: incredible range and extreme speed.
Within this article, we’ll give a brief explanation on IEEE protocols and standards and a history of the 802.11 family. We’ll also take a look at three up-and-coming wireless network options:
  • 802.11ah: for low data rate, long-range sensors and controllers.
  • 802.11af: for similar applications to 802.11ah. This network option relies on unused TV spectrums instead of 2.4 GHz or 5 GHz bands for transmission.
  • 802.11ad: for multigigabit speeds (sans wires) and high-performance networking.

A Brief Overview Of IEEE Standards

The Institute of Electronics and Electronics Engineers (IEEE) is a professional association that acts as an authority for electronic communication. The IEEE creates standards and protocols for communication in industries like telecommunications, information technology, and much more.  Each standard that the IEEE ratifies is designated by a unique number. 802 is the prefix used for any protocol or amendment that entails area networking. For instance, standards for ethernet local area networks (LANs) are designated by 802.3, and Bluetooth personal area networks (PANs) are designated by 802.15. Wireless LANs—the subject of this article—are designated by 802.11.
In 1997, the IEEE released the base standard for wireless local area network (WLAN) communications, which they called called 802.11. In the years following, many amendments were made to this standard. Let’s walk through what each standard has brought to communications.

A History Of Past & Current 802.11 Amendments




802.11a (1990): “WiFi A”—also known as the OFDM (Orthogonal, Frequency Division Multiplexing) waveform—was the first amendment, and it came two years after the standard was complete. This amendment defined 5 gigahertz band extensions, which made it more flexible (since the 2.4 GHz space was crowded with wireless home telephones, baby monitors, microwaves, and more).
802.11b (2000): As one of the first widely used protocols, “WiFi B” had an improved range and transfer rate, but it is very slow by today’s standards (maxing out at 11 mbps). 802.11b defined 2.4 GHz band extensions. This protocol is still supported (since 80% of WiFi runs off of 2.4 GHz), but the technology isn’t manufactured anymore because it’s been replaced by faster options.
802.11g (2003): “WiFi G” came onto the market three years after B, and it offered roughly five times the transfer rate (at 54 mbps). It defined 2.4 GHz band extensions at a higher data rate. The primary benefit it offered was greater speed, which was increasingly important to consumers. Today, these speeds are not fast enough to keep up with the average number of WiFi-enabled devices in a household or a strong wireless draw from a number of devices.
802.11n (2007): “WiFi N” offered another drastic improvement in transfer rate speed—300-450 mbps, depending on the number of antennas—and range. This was the first main protocol that operated on both 2.4 GHz and 5 GHz. These transfer rates allow large amounts of data to be transmitted more quickly than ever before.
802.11ac (2013): In 2013, “WiFi AC” was introduced. AC was the first step in what is considered “Gigabit WiFi,” meaning it offers speeds of nearly 1 gbps, which is equivalent to 800 mbps. That’s roughly 20 times more powerful than 802.11n, making this an important (and widely used) new protocol. AC runs on a 5 GHz band, which is important—because it’s less widely used, you’ll have an advantage as far as high online speeds are concerned, though the higher frequency and higher modulation rate mean the range is more limited

“Future” WiFi Technologies

802.11AH

802.11ah is 900 megahertz WiFi, which is ideal for low power consumption and long-range data transmission. It’s earned the nickname “the low power WiFi” for that very reason.
Who will use it: Companies who have sensor-level technology that they need to be WiFi-enabled.
Benefits:
  • Can penetrate through walls and obstructions better than high frequency networks like 802.11ad, which we’ll discuss below.
  • Great for short, bursty data that doesn’t use a good deal of power consumption and needs to travel long distances. This would be applicable in smart building applications, like smart lightingsmart HVAC, and smart security systems. It would also work for smart city applications, like parking garages and parking meters.
Downfalls:
  • There is no global standard for 900 MHz. Right now, 80% of the world uses 2.4 GHz WiFi. That is a benefit because you can connect on these global standard bands anywhere in the world. (If you’re on a Mac, try this: hold down the option key and click your WiFi symbol at the top. You’ll see a bunch of information about the WiFi network you’re connected to, including channel.)
  • AH isn’t available right now. The IEEE is in the final phases of resolving the standard, and once that’s done—currently slated for March 2016—the chip manufacturers (like HUAWEI, Broadcom, and Qualcomm) will have a chance to start creating physical layer chips. You will most likely start seeing WiFi AH products appear in the next 18 months to two years. The good news, however, is that organizations are providing similar technology for low power, wide-area networks (LPWAN) now, so you don’t have to wait until 802.11ah is complete to benefit from the technology.

802.11.AF

802.11af utilizes unused television spectrum frequencies (i.e., white spaces) to transmit information. Because of this, it’s earned the nickname “White-Fi.” Because these frequencies are between 54 MHz and 790 MHz, AF can be used for low power, wide-area range, like AH.
Who will use it:
  • Organizations that need extremely long-range wireless networks.
  • Lower interference can drastically improve performance.
Benefits:
  • Because AF can use several unused TV channels at once, it can be used for very long range devices—potentially up to several miles, with high data rates.
Downfalls:
  • It’s still in proposal stages, so it hasn’t been approved or released to the mass market yet.
  • “White space” channels are not available everywhere, like in big cities.

 802.11AD

802.11ad couldn’t be further from AH. While AH is a future LPWAN option, AD is ideal forvery high data rate, very short range communications.
AD WiFi—previously known as WiGig because of it’s predecessor 802.11ac—separates itself from the 2.4 GHz and 5 GHz bands and operates on a 60 GHz band. This space is completely free and open, which helps it achieve speeds that are 50 times faster than WiFi N. And while AH uses 900 MHz, AD uses 60 GHz. To put that into perspective, 60 GHz is equivalent to 60,000 MHz.
Who will use it:
  • Enterprise-level organizations that need extended bandwidth with very short-range devices.
Benefits:
  • Very good for high data rate, short-range file transfers and communication.Back in 2007 when 802.11n was introduced, it was regarded as the fastest protocol yet. At 8 gbps, AD is 50 times faster than WiFi N. In fact, this protocol is so fast that, according to this Fast Company article, AD has the potential to “enable a whole new class of devices” like “wireless hard drives that feel as fast as locally connected ones.”
Downfalls:
  • The chips are very expensive to manufacture, which makes this a costly set up.
  • AD provides a very short range. When you have a really high frequency like 60 GHz, short-range communications are ideal. This isn’t a problem if you have the router right next to you, but if you need it to penetrate walls, you’ll need additional routers.
  • AD (which operates on a 60 GHz band) is not a recognized international standard. This is also a downside for AH.

Conclusion

AH (low data rate, long-range sensors and controller WiFi), AF (or “White-Fi, as it uses unused TV spectrums for long-range transmission), and AD (the non-wired multigigabit high-performance networking WiFi) are three important up-and-coming changes to WiFi as we know it.
These three amendments are clear evidence that WiFi has undergone a spectacular transformation in the past decade and a half. And with the IEEE reviewing amendments to the 802.11 protocol on a near regular basis, we’re certain that the next 15 years will hold just as many interesting changes.


Wednesday, December 9, 2015

TED Talks - Forget Wi-Fi. Meet the new Li-Fi Internet




Tuesday, October 14, 2014

PTP 820’s Suite of Scalable and Flexible Backhaul Solutions


Much as people want them, silver bullets are hard to come by – long gone are the days when a single solution can solve for any connectivity situation or need.

In the wireless broadband industry, this is especially the case for point-to-point (PTP) solutions which can backhaul both IP and legacy TDM traffic today, but be future-proof and scale to handle tomorrow’s high-volume IP traffic. The reality is that there are many different PTP applications – wireless ISP (WISP) backhaul, small-cell backhaul, video surveillance, public safety backhaul, enterprise access and campus connectivity using private networks – all of which have different requirements.

Today, Cambium Networks is introducing the PTP 820 point-to-point licensed microwave backhaul platform to our PTP portfolio with three distinct modules designed to meet those varied demands: PTP 820S, PTP 820C and PTP 820G. PTP 820 can be deployed in all-outdoor, split-mount and all-indoor configurations, and supports all types of networks requiring either hybrid or all-IP traffic.

PTP 820S and PTP 820C are all-outdoor radios, well-suited to the all-IP traffic needs of WISPs, enterprise access and campus networks. PTP 820S is a single core radio capable of 1Gbps throughput which provides the lowest entry cost for the network edge. PTP 820C has dual-core functionality, enabling the system to be deployed up to 1Gbps day 1, with scalability of up to 2Gbps day 2 via a software upgrade to enable the second radio core. This eliminates the need for expensive manual intervention on the tower when more capacity is needed in the core network.

With options for both native Ethernet and TDM traffic, the flexibility of PTP 820G makes it ideal for public safety, utility, railroad, transport and government private networks. With both split-mount and all-indoor options, PTP 820G provides a solution for the most challenging network availability requirements.

With its breadth of capabilities, PTP 820 will solve the specific connectivity challenges you are facing and provide you the scalability and flexibility you need for the job. Plug in your own specs into LINKPlanner, our free tool for designing and configuring PTP links.

Wednesday, February 27, 2013

Wireless 101 - Part 2


Antenna

An antenna is a device to transmit and/or receive electromagnetic waves. Electromagnetic waves are often referred to as radio waves. Most antennas are resonant devices, which operate efficiently over a relatively narrow frequency band. An antenna must be tuned (matched) to the same frequency band as the radio system to which it is connected otherwise reception and/or transmission will be impaired.

Types of antenna

There are 3 types of antennas used with mobile wireless, omnidirectional, dish and panel antennas.
+ Omnidirectional radiate equally in all directions
+ Dishes are very directional
+ Panels are not as directional as Dishes.



Decibels

Decibels (dB) are the accepted method of describing a gain or loss relationship in a communication system. If a level is stated in decibels, then it is comparing a current signal level to a previous level or preset standard level. The beauty of dB is they may be added and subtracted. A decibel relationship (for power) is calculated using the following formula:

dB_formula.jpg

“A” might be the power applied to the connector on an antenna, the input terminal of an amplifier or one end of a transmission line. “B” might be the power arriving at the opposite end of the transmission line, the amplifier output or the peak power in the main lobe of radiated energy from an antenna. If “A” is larger than “B”, the result will be a positive number or gain. If “A” is smaller than “B”, the result will be a negative number or loss.

You will notice that the “B” is capitalized in dB. This is because it refers to the last name of Alexander Graham Bell.

Note:

+ dBi is a measure of the increase in signal (gain) by your antenna compared to the hypothetical isotropic antenna (which uniformly distributes energy in all directions) -> It is a ratio. The greater the dBi value, the higher the gain and the more acute the angle of coverage.

+ dBm is a measure of signal power. It is the the power ratio in decibel (dB) of the measured power referenced to one milliwatt (mW). The “m” stands for “milliwatt”.

Example:

At 1700 MHz, 1/4 of the power applied to one end of a coax cable arrives at the other end. What is the cable loss in dB?

Solution:

dB_example.jpg

=> Loss = 10 * (- 0.602) = – 6.02 dB

From the formula above we can calculate at 3 dB the power is reduced by half. Loss = 10 * log (1/2) = -3 dB; this is an important number to remember.

Beamwidth

The angle, in degrees, between the two half-power points (-3 dB) of an antenna beam, where more than 90% of the energy is radiated.

beamwidth.jpg

OFDM

OFDM was proposed in the late 1960s, and in 1970, US patent was issued. OFDM encodes a single transmission into
multiple sub-carriers. All the slow subchannel are then multiplexed into one fast combined channel.

The trouble with traditional FDM is that the guard bands waste bandwidth and thus reduce capacity. OFDM selects channels that overlap but do not interfere with each other.

FDM_OFDM.gif

OFDM works because the frequencies of the subcarriers are selected so that at each subcarrier frequency, all other subcarriers do not contribute to overall waveform.

In this example, three subcarriers are overlapped but do not interfere with each other. Notice that only the peaks of each subcarrier carry data. At the peak of each of the subcarriers, the other two subcarriers have zero amplitude.

OFDM.jpg

Types of network in CCNA Wireless

+ A LAN (local area network) is a data communications network that typically connects personal computers within a very limited geographical (usually within a single building). LANs use a variety of wired and wireless technologies, standards and protocols. School computer labs and home networks are examples of LANs.

+ A PAN (personal area network) is a term used to refer to the interconnection of personal digital devices within a range of about 30 feet (10 meters) and without the use of wires or cables. For example, a PAN could be used to wirelessly transmit data from a notebook computer to a PDA or portable printer.

+ A MAN (metropolitan area network) is a public high-speed network capable of voice and data transmission within a range of about 50 miles (80 km). Examples of MANs that provide data transport services include local ISPs, cable television companies, and local telephone companies.

+ A WAN (wide area network) covers a large geographical area and typically consists of several smaller networks, which might use different computer platforms and network technologies. The Internet is the world’s largest WAN. Networks for nationwide banks and superstore chains can be classified as WANs.

types_of_network.jpg

Bluetooth

Bluetooth wireless technology is a short-range communications technology intended to replace the cables connecting portable and/or fixed devices while maintaining high levels of security. Connections between Bluetooth devices allow these devices to communicate wirelessly through short-range, ad hoc networks. Bluetooth operates in the 2.4 GHz unlicensed ISM band.

Note:

Industrial, scientific and medical (ISM) band is a part of the radio spectrum that can be used by anybody without a license in most countries. In the U.S, the 902-928 MHz, 2.4 GHz and 5.7-5.8 GHz bands were initially used for machines that emitted radio frequencies, such as RF welders, industrial heaters and microwave ovens, but not for radio communications. In 1985, the FCC Rules opened up the ISM bands for wireless LANs and mobile communications. Nowadays, numerous applications use this band, including cordless phones, wireless garage door openers, wireless microphones, vehicle tracking, amateur radio…

WiMAX

Worldwide Interoperability for Microwave Access (WiMax) is defined by the WiMax forum and standardized by the IEEE 802.16 suite. The most current standard is 802.16e.

Operates in two separate frequency bands, 2-11 GHz and 10-66 GHz
At the higher frequencies, line of sight (LOS) is required – point-to-point links only
In the lower region, the signals propagate without the requirement for line of sight (NLOS) to customers

Basic Service Set (BSS)

A group of stations that share an access point are said to be part of one BSS.

Extended Service Set (ESS)

Some WLANs are large enough to require multiple access points. A group of access points connected to the same WLAN are known as an ESS. Within an ESS, a client can associate with any one of many access points that use the same Extended service set identifier (ESSID). That allows users to roam about an office without losing wireless connection.

IEEE 802.11 standard

A family of standards that defines the physical layers (PHY) and the Media Access Control (MAC) layer.

* IEEE 802.11a: 54 Mbps in the 5.7 GHz ISM band
* IEEE 802.11b: 11 Mbps in the 2.4 GHz ISM band
* IEEE 802.11g: 54 Mbps in the 2.4 GHz ISM band
* IEEE 802.11i: security. The IEEE initiated the 802.11i project to overcome the problem of WEP (which has many flaws and it could be exploited easily)
* IEEE 802.11e: QoS
* IEEE 802.11f: Inter Access Point Protocol (IAPP)

More information about 802.11i:

The new security standard, 802.11i, which was ratified in June 2004, fixes all WEP weaknesses. It is divided into three main categories:

1. Temporary Key Integrity Protocol (TKIP) is a short-term solution that fixes all WEP weaknesses. TKIP can be used with old 802.11 equipment (after a driver/firmware upgrade) and provides integrity and confidentiality.
2. Counter Mode with CBC-MAC Protocol (CCMP) [RFC2610] is a new protocol, designed from ground up. It uses AES as its cryptographic algorithm, and, since this is more CPU intensive than RC4 (used in WEP and TKIP), new 802.11 hardware may be required. Some drivers can implement CCMP in software. CCMP provides integrity and confidentiality.
3. 802.1X Port-Based Network Access Control: Either when using TKIP or CCMP, 802.1X is used for authentication.

Wireless Access Points

There are two categories of Wireless Access Points (WAPs):
* Autonomous WAPs
* Lightweight WAPs (LWAPs)

Autonomous WAPs operate independently, and each contains its own configuration file and security policy. Autonomous WAPs suffer from scalability issues in enterprise environments, as a large number of independent WAPs can quickly become difficult to manage.

Lightweight WAPs (LWAPs) are centrally controlled using one or more Wireless LAN Controllers (WLCs), providing a more scalable solution than Autonomous WAPs.

Encryption

Encryption is the process of changing data into a form that can be read only by the intended receiver. To decipher the message, the receiver of the encrypted data must have the proper decryption key (password).

TKIP

TKIP stands for Temporal Key Integrity Protocol. It is basically a patch for the weakness found in WEP. The problem with the original WEP is that an attacker could recover your key after observing a relatively small amount of your traffic. TKIP addresses that problem by automatically negotiating a new key every few minutes — effectively never giving an attacker enough data to break a key. Both WEP and WPA-TKIP use the RC4 stream cipher.

TKIP Session Key

* Different for every pair
* Different for every station
* Generated for each session
* Derived from a “seed” called the passphrase

AES

AES stands for Advanced Encryption Standard and is a totally separate cipher system. It is a 128-bit, 192-bit, or 256-bit block cipher and is considered the gold standard of encryption systems today. AES takes more computing power to run so small devices like Nintendo DS don’t have it, but is the most secure option you can pick for your wireless network.

EAP

Extensible Authentication Protocol (EAP) [RFC 3748] is just the transport protocol optimized for authentication, not the authentication method itself:

” EAP is an authentication framework which supports multiple authentication methods. EAP typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its own support for duplicate elimination and retransmission, but is reliant on lower layer ordering guarantees. Fragmentation is not supported within EAP itself; however, individual EAP methods may support this.” — RFC 3748, page 3

Some of the most-used EAP authentication mechanism are listed below:

* EAP-MD5: MD5-Challenge requires username/password, and is equivalent to the PPP CHAP protocol [RFC1994]. This method does not provide dictionary attack resistance, mutual authentication, or key derivation, and has therefore little use in a wireless authentication enviroment.
* Lightweight EAP (LEAP): A username/password combination is sent to a Authentication Server (RADIUS) for authentication. Leap is a proprietary protocol developed by Cisco, and is not considered secure. Cisco is phasing out LEAP in favor of PEAP.
* EAP-TLS: Creates a TLS session within EAP, between the Supplicant and the Authentication Server. Both the server and the client(s) need a valid (x509) certificate, and therefore a PKI. This method provides authentication both ways.
* EAP-TTLS: Sets up a encrypted TLS-tunnel for safe transport of authentication data. Within the TLS tunnel, (any) other authentication methods may be used. Developed by Funk Software and Meetinghouse, and is currently an IETF draft.
*EAP-FAST: Provides a way to ensure the same level of security as EAP-TLS, but without the need to manage certificates on the client or server side. To achieve this, the same AAA server on which the authentication will occur generates the client credential, called the Protected Access Credential (PAC).
* Protected EAP (PEAP): Uses, as EAP-TTLS, an encrypted TLS-tunnel. Supplicant certificates for both EAP-TTLS and EAP-PEAP are optional, but server (AS) certificates are required. Developed by Microsoft, Cisco, and RSA Security, and is currently an IETF draft.
* EAP-MSCHAPv2: Requires username/password, and is basically an EAP encapsulation of MS-CHAP-v2 [RFC2759]. Usually used inside of a PEAP-encrypted tunnel. Developed by Microsoft, and is currently an IETF draft.

RADIUS

Remote Authentication Dial-In User Service (RADIUS) is defined in [RFC2865] (with friends), and was primarily used by ISPs who authenticated username and password before the user got authorized to use the ISP’s network.

802.1X does not specify what kind of back-end authentication server must be present, but RADIUS is the “de-facto” back-end authentication server used in 802.1X.

Roaming

Roaming is the movement of a client from one AP to another while still transmitting. Roaming can be done across different mobility groups, but must remain inside the same mobility domain. There are 2 types of roaming:

A client roaming from AP1 to AP2. These two APs are in the same mobility group and mobility domain

Roaming_Same_Mobile_Group.jpg

Roaming in the same Mobility Group

A client roaming from AP1 to AP2. These two APs are in different mobility groups but in the same mobility domain

Roaming_Different_Mobile_Group.jpg
 

Monday, February 25, 2013

Wireless 101 - Part 1


In this article we will discuss about Wireless technologies mentioned in CCNA.

Wireless LAN (WLAN) is very popular nowadays. Maybe you have ever used some wireless applications on your laptop or cellphone. Wireless LANs enable users to communicate without the need of cable. Below is an example of a simple WLAN:

Wireless_Applications.jpg

Each WLAN network needs a wireless Access Point (AP) to transmit and receive data from users. Unlike a wired network which operates at full-duplex (send and receive at the same time), a wireless network operates at half-duplex so sometimes an AP is referred as a Wireless Hub.





The major difference between wired LAN and WLAN is WLAN transmits data by radiating energy waves, called radio waves, instead of transmitting electrical signals over a cable.

Also, WLAN uses CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) instead of CSMA/CD for media access. WLAN can’t use CSMA/CD as a sending device can’t transmit and receive data at the same time. CSMA/CA operates as follows:

+ Listen to ensure the media is free. If it is free, set a random time before sending data
+ When the random time has passed, listen again. If the media is free, send the data. If not, set another random time again
+ Wait for an acknowledgment that data has been sent successfully
+ If no acknowledgment is received, resend the data

IEEE 802.11 standards:

Nowadays there are three organizations influencing WLAN standards. They are:

+ ITU-R: is responsible for allocation of the RF bands
+ IEEE: specifies how RF is modulated to transfer data
+ Wi-Fi Alliance: improves the interoperability of wireless products among vendors

But the most popular type of wireless LAN today is based on the IEEE 802.11 standard, which is known informally as Wi-Fi.

* 802.11a: operates in the 5.7 GHz ISM band. Maximum transmission speed is 54Mbps and approximate wireless range is 25-75 feet indoors.
* 802.11b: operates in the 2.4 GHz ISM band. Maximum transmission speed is 11Mbps and approximate wireless range is 100-200 feet indoors.
* 802/11g: operates in the 2.4 GHz ISM band. Maximum transmission speed is 54Mbps and approximate wireless range is 100-200 feet indoors.

ISM Band: The ISM (Industrial, Scientific and Medical) band, which is controlled by the FCC in the US, generally requires licensing for various spectrum use. To accommodate wireless LAN’s, the FCC has set aside bandwidth for unlicensed use including the 2.4Ghz spectrum where many WLAN products operate.

Wi-Fi: stands for Wireless Fidelity and is used to define any of the IEEE 802.11 wireless standards. The term Wi-Fi was created by the Wireless Ethernet Compatibility Alliance (WECA). Products certified as Wi-Fi compliant are interoperable with each other even if they are made by different manufacturers.



Access points can support several or all of the three most popular IEEE WLAN standards including 802.11a, 802.11b and 802.11g.

WLAN Modes:

WLAN has two basic modes of operation:

* Ad-hoc mode: In this mode devices send data directly to each other without an AP.

Wireless_Ad-hoc_mode.jpg

* Infrastructure mode: Connect to a wired LAN, supports two modes (service sets):

+ Basic Service Set (BSS): uses only a single AP to create a WLAN
+ Extended Service Set (ESS): uses more than one AP to create a WLAN, allows roaming in a larger area than a single AP. Usually there is an overlapped area between two APs to support roaming. The overlapped area should be more than 10% (from 10% to 15%) to allow users moving between two APs without losing their connections (called roaming). The two adjacent APs should use non-overlapping channels to avoid interference. The most popular non-overlapping channels are channels 1, 6 and 11 (will be explained later).

Wireless_Infrastructure_mode.jpg

Roaming: The ability to use a wireless device and be able to move from one access point’s range to another without losing the connection.

When configuring ESS, each of the APs should be configured with the same Service Set Identifier (SSID) to support roaming function. SSID is the unique name shared among all devices on the same wireless network. In public places, SSID is set on the AP and broadcasts to all the wireless devices in range. SSIDs are case sensitive text strings and have a maximum length of 32 characters. SSID is also the minimum requirement for a WLAN to operate. In most Linksys APs (a product of Cisco), the default SSID is “linksys”.

Wireless Encoding

When a wireless device sends data, there are some ways to encode the radio signal including frequency, amplitude & phase.



Frequency Hopping Spread Spectrum(FHSS): uses all frequencies in the band, hopping to different ones after fixed time intervals. Of course the next frequency must be predetermined by the transmitter and receiver.

Frequency_Hopping_Spread_Spectrum_FHSS.jpg

The main idea of this method is signals sent on different frequencies will be received at different levels of quality. By hopping to different frequencies, signals will be greatly improved the possibility that most of it will get through. For example, suppose there is another device using the 150-250 kHz range. If our device transmits in this range then the signals will be significantly interfered. By hopping at different frequencies, there is only a small interference while transmitting and it is acceptable.

Direct Sequence Spread Spectrum (DSSS): This method transmits the signal over a wider frequency band than required by multiplying the original user data with a pseudo random spreading code. The result is a wide-band signal which is very “durable” to noise. Even some bits in this signal are damaged during transmission, some statistical techniques can recover the original data without the need for retransmission.

Note: Spread spectrum here means the bandwidth used to transfer data is much wider than the bandwidth needs to transfer that data.

Traditional communication systems use narrowband signal to transfer data because the required bandwidth is minimum but the signal must have high power to cope with noise. Spread Spectrum does the opposite way when transmitting the signal with much lower power level (can transmit below the noise level) but with much wider bandwidth. Even if the noise affects some parts of the signal, the receiver can easily recover the original data with some algorithms.

wireless_Spread_Spectrum_Signal.jpg

Now you understand the basic concept of DSSS. Let’s discuss about the use of DSS in the 2.4 GHz unlicensed band.

The 2.4 GHz band has a bandwidth of 82 MHz, with a range from 2.402 GHz to 2.483 GHz. In the USA, this band has 11 different overlapping DSSS channels while in some other countries it can have up to 14 channels. Channels 1, 6 and 11 have least interference with each other so they are preferred over other channels.

wireless_2_4_GHz_band.png

Orthogonal Division Multiplexing (OFDM): encodes a single transmission into multiple sub-carriers to save bandwidth. OFDM selects channels that overlap but do not interfere with each other by selecting the frequencies of the subcarriers so that at each subcarrier frequency, all other subcarriers do not contribute to overall waveform.

In the picture below, notice that only the peaks of each subcarrier carry data. At the peak of each of the subcarriers, the other two subcarriers have zero amplitude.

wireless_OFDM.jpg

Below is a summary of the encoding classes which are used popularly in WLAN.

Encoding Used by
FHSS The original 802.11 WLAN standards used FHSS, but the current standards (802.11a, 802.11b, and 802.11g) do not
DSSS 802.11b
OFDM 802.11a, 802.11g, 802.11n



WLAN Security Standards

Security is one of the most concerns of people deploying a WLAN so we should grasp them.

Wired Equivalent Privacy (WEP)

WEP is the original security protocol defined in the 802.11b standard so it is very weak comparing to newer security protocols nowadays.

WEP is based on the RC4 encryption algorithm, with a secret key of 40 bits or 104 bits being combined with a 24-bit Initialisation Vector (IV) to encrypt the data (so sometimes you will hear “64-bit” or “128-bit” WEP key). But RC4 in WEP has been found to have weak keys and can be cracked easily within minutes so it is not popular nowadays.

The weak points of WEP is the IV is too small and the secret key is static (the same key is used for both encryption and decryption in the whole communication and never expires).

Wi-Fi Protected Access (WPA)

In 2003, the Wi-Fi Alliance developed WPA to address WEP’s weaknesses. Perhaps one of the most important improvements of WPA is the Temporal Key Integrity Protocol (TKIP) encryption, which changes the encryption key dynamically for each data transmission. While still utilizing RC4 encryption, TKIP utilizes a temporal encryption key that is regularly renewed, making it more difficult for a key to be stolen. In addition, data integrity was improved through the use of the more robust hashing mechanism, the Michael Message Integrity Check (MMIC).

In general, WPA still uses RC4 encryption which is considered an insecure algorithm so many people viewed WPA as a temporary solution for a new security standard to be released (WPA2).

Wi-Fi Protected Access 2 (WPA2)

In 2004, the Wi-Fi Alliance updated the WPA specification by replacing the RC4 encryption algorithm with Advanced Encryption Standard-Counter with CBC-MAC (AES-CCMP), calling the new standard WPA2. AES is much stronger than the RC4 encryption but it requires modern hardware.

Standard Key Distribution Encryption
WEP Static Pre-Shared Weak
WPA Dynamic TKIP
WPA2 Both (Static & Dynamic) AES

Wireless Interference

The 2.4 GHz & 5 GHz spectrum bands are unlicensed so many applications and devices operate on it, which cause interference. Below is a quick view of the devices operating in these bands:

+ Cordless phones: operate on 3 frequencies, 900 MHz, 2.4 GHz, and 5 GHz. As you can realize, 2.4 GHz and 5 GHz are the frequency bands of 802.11b/g and 802.11a wireless LANs.

Most of the cordless phones nowadays operate in 2.4 GHz band and they use frequency hopping spread spectrum (FHSS) technology. As explained above, FHSS uses all frequencies in the the entire 2.4 GHz spectrum while 802.11b/g uses DSSS which operates in about 1/3 of the 2.4 GHz band (1 channel) so the use of the cordless phones can cause significant interference to your WLAN.

wireless_cordless_phone.jpg

An example of cordless phone

+ Bluetooth: same as cordless phone, Bluetooth devices also operate in the 2.4 GHz band with FHSS technology. Fortunately, Bluetooth does not cause as much trouble as cordless phone because it usually transfers data in a short time (for example you copy some files from your laptop to your cellphone via Bluetooth) within short range. Moreover, from version 1.2 Bluetooth defined the adaptive frequency hopping (AFH) algorithm. This algorithm allows Bluetooth devices to periodically listen and mark channels as good, bad, or unknown so it helps reduce the interference with our WLAN.

+ Microwaves (mostly from oven): do not transmit data but emit high RF power and heating energy. The magnetron tubes used in the microwave ovens radiate a continuous-wave-like at frequencies close to 2.45 GHz (the center burst frequency is around 2.45 – 2.46 GHz) so they can interfere with the WLAN.

+ Antenna: There are a number of 2.4 GHz antennas on the market today so they can interfere with your wireless network.

+ Metal materials or materials that conduct electricity deflect Wi-Fi signals and create blind spots in your coverage. Some of examples are metal siding and decorative metal plates.

+ Game controller, Digital Video Monitor, Wireless Video Camera, Wireless USB may also operate at 2.4 GHz and cause interference too.

Monday, January 28, 2013

Wireless Basics


Way back in the early days of Wireless LAN (WLAN) development, there were a whole lot of folks trying different types of technologies to get wireless LAN communications to work. Eventually some clear winners started to rise to the top and it was seen that interoperability between these technologies needed to exist. It was this desire for inter-operation that eventually led to the creation of the wireless LAN standards that we have today.
 
But what are standards? Standards allow companies who build wireless networking devices know that their equipment will work with other manufacturer's wireless equipment. These standards are known today as IEEE 802.11a, 802.11b, 802.11g and the most recently ratified 802.11n.
 

Jamming out to the Band

 
2.4 Gigahertz Radio Band
 
I'm a big music fan and love a great band. But today we're talking the radio frequency band. This was thought by many to be the best band for commercial inroads to consumers. The problem was and still is today is that its a very crowded RF band that's used by most home appliances including things like your microwave oven!
 
IEEE 802.11 - The Beginning of Wireless Networking Standards
 
At the beginning of any new technology, inventors and technology developers tend to each take a different view on the specific technology at hand. Wireless networking was no exception. At that time players within the industry were looking at all types of methods of transferring LAN data without the use of wires. As things evolved people realized their technologies weren't compatible with each other. Again, Standards were needed to help move the technology to consumers and businesses.
To be honest standards don't always necessarily help get the technology to consumers quickly but it does ensure interoperability when it does get to the consumer.
Eventually certain functions, features and terminology that were common among each manufacturer got taken into the standard. It essentially became a popularity contest of features or terminology.

And the winners of the Wireless Networking popularity contest are:

  • Access Point (AP)
  • Basic Service Set (BSS)
  • Extended Service Set (ESS)
  • SSID (Service Set Identifier)
  • WEP (Wireless Equivalent Privacy)
  • Ad hoc Networking
  • Infrastructure Networking
 
These are just a few terms that made it into the standard and all of these date back to the first 802.11 wireless networks.
 
The IEEE 802.11b Standard

IEEE 802.11b was the first major upgrade to the WLAN specification. It was exciting news because this new standard ratified the wireless speeds up to 11Mbps. The typical range for an IEEE 802.11b wireless network is about 100 feet (30 meters) or so depending on the environment.
Though the radio band was still over crowded, the 802.11b standard provided much needed relief for places not accessible by wire AND at a decent usable speed.
 
The IEEE 802.11g Standard

 

 
The next major improvement in WLAN networking in the 2.4 GHz RF band was IEEE 802.11g. The "g" standard provided for even more network speed allowing up to 54Mbps AND was an easy upgrade for users of 802.11b as the new radios was backward compatible.
 
802.11g was able to achieve these cool new speeds through the use of Orthogonal Frequency Division Multiplexing (OFDM). Multiplexing is a technology that allows you to take multiple pieces of data and combine them into a single unit to be modulated and sent over the same radio channel. What OFDM does is, it takes the data that needs to be transmitted and breaks it up into 52 sub-carriers that are all multiplexed together into a single data stream. Since there are 52 sub-carriers the final data stream can be sent at a slower rate, provide better reliability, sent a great distance and yet deliver more data.
 
5 Gigahertz Radio Band
 
While IEEE 802.11b was gaining wide acceptance in the 2.4 Gigahertz band, 802.11a was quietly getting some use in the 5 Gigahertz RF range.
 
IEEE 802.11a was 54 Mbps before 802.11g was even born
 
One of big advantages that 802.11a had over 802.11b was that it's speed was 54Mbps and operating in the less clutter 5 Gig RF band. It also used OFDM as the modulation technique, so why didn't it take off like 802.11b did?
 
The biggest problem was that it wasn't compatible with devices that ran in 2.4Ghz band, namely 802.11b and g. And it tended to be a bit more expensive (at the time).

Today's Wireless Networking technologies allow you to operate in both frequencies.

IEEE 802.11n
 
IEEE 802.11n uses both OFDM and MIMO (multiple-in multiple-out) RF modulation techniques. This allows for a maximum throughput of 600Mbps using four MIMO streams or 150Mbps using a single stream. It operates in both RF bands, 2.4 GHz and 5 GHz and is backward compatible with the other standards.
 
The biggest problem with 802.11n is that it has only recently been ratified and many device manufacturers have not released firmware updates for the new standard.
 
All in all WLAN technologies have come a long way and are getting better every day. They're more secure, faster, cheaper and more scalable. It easy to see that every day we are becoming more and more connected. And wireless networking has just begun to become part of the overall network infrastructure.
 

Friday, November 23, 2012

Cisco Shells Out $1.2B for Meraki



Only days after unveiling the acquisition of cloud management software vendor Cloupia, Cisco Systems Inc. (Nasdaq: CSCO) has announced a deal to buy "cloud networking" specialist Meraki Networks Inc. for US$1.2 billion in cash.

Meraki has been developing its centralized, remote management capabilities since 2006 and now has a range of tools and products (Ethernet switches, security devices, Wi-Fi access points) that enables network managers to run their networks using a central, remote (or "cloud") management platform.

Meraki, which has 330 staff, more than 10,000 customers and an order book currently running at an annual rate of about $100 million, will form the core of Cisco's new Cloud Networking Group once the acquisition is complete. That is expected to happen some time in the next couple of months. According to a letter sent to staff by CEO Sanjit Biswas, Meraki had been planning an IPO but the recent takeover offer from Cisco was too good to turn down. The company had raised more than $80 million from its investors, which include Google (Nasdaq: GOOG), Sequoia Capital and DAG Ventures Management .

Why this matters

The centralized management of networks is the infrastructure and application control model that looks set to dominate in the future, so it makes sense that Cisco would want to maintain its role as a key provider of networking capabilities to enterprises and service providers by acquiring key players in this space.

What's interesting about Meraki, though, is its long-time focus on the remote management of wireless networking capabilities. Those capabilities not only make its technology increasingly relevant in an enterprise world that is grappling with the challenge of mobile security and access rights in the bring-your-own-device (BYOD) age, but make it even more relevant for Cisco as it targets mobile operators with its carrier Wi-Fi and small-cell products.

And given that Cisco has also recently acquired Wi-Fi traffic analyzer startup ThinkSmart, it seems very likely that the networking giant might still be looking to flesh out its wireless management and cloud networking portfolio further with other targeted Service Provider Information Technology (SPIT) acquisitions.
 

Thursday, November 15, 2012

MIT researchers may have solved the spectrum crunch



Researchers at MIT's Research Laboratory of Electronics said they have discovered a way to improve wireless data transmissions without adding base stations or finding more spectrum. The researchers said they figured out a way for devices to use algebra to seamlessly weave data streams from Wi-Fi to LTE without dropping packets of data.


According to MIT's Technology Review, Professor Muriel Medard is leading the effort and the technology has been developed by researchers at MIT, the University of Porto in Portugal, Harvard University, Caltech and the Technical University of Munich.


Typically, a percentage of data packets are dropped due to interference or congestion when they are transmitted over a wireless network. Dropped packets cause delays and generate back-and-forth traffic on the network to replace those packets, which causes more congestion.


The MIT technology changes the way data packets are sent: So instead of sending packets, it sends an algebraic equation that describes a series of packets. If a packet goes missing, instead of asking the network to resend it, the receiving device solves the missing packet problem itself.


The new technology has been tested in Wi-Fi networks at MIT. The researchers managed to boost speeds from 1 Mbps to 16 Mbps in systems where 2 percent of data packets are typically lost. In situations where 5 percent of data packets were typically lost, the bandwidth jumped from 0.5 Mbps to 13.5 Mbps.


MIT researchers said several companies have licensed the underlying technology but MIT is under nondisclosure agreements and can't reveal those firms. The licensing is being handled by the MIT/Caltech startup, Code-On Technologies.

Although the technology is still in its early stages, the improvements are viewed as a breakthrough and some experts believe it could be widely deployed within two to three years.

Sunday, October 30, 2011

Cisco Launches Industry's First Integrated Wireless TV Solution

Today Cisco announced the launch of the industry's first wireless IPTV service with AT&T. Cisco is the sole provider of this advanced wireless IPTV solution featuring new wireless receivers and wireless access points (WAPs), available across the entire AT&T U-verse TV footprint beginning Monday, October 31.

Consumers can now rely on wireless technology to deliver high-quality video services throughout the home without the need for cables or wires. With this new technology, you can watch TV in virtually any room in the home, even rooms not wired for TV -- like the kitchen, basement or indoor garage. TV content is sent from the Cisco wireless access point via in-home Wi-Fi to the Cisco(R) wireless receiver next to the TV. It's as easy as plugging the TV into a power source, attaching high-definition multimedia interface (HDMI) cables or other audiovisual connection to the TV and pressing two buttons to establish the wireless connection.

Highlights: The Wireless TV Solution:


--  Cisco's wireless TV solution is the first of its kind to deliver both standard definition (SD) and high definition (HD) programming to multiple receivers with "built-in" or integrated Wi-Fi. Just one wireless access point per home can support two wireless receivers connected to TVs.

--  Cisco's wireless TV solution features the ISB7005 wireless receiver and the VEN401 Wireless Access Point, now part of the Cisco Videoscape(TM) portfolio.

--  Cisco's wireless receiver delivers live TV channels and interactive services -- and functions as a Total Home HD DVR, allowing consumers to view and manage DVR recordings wirelessly from a wired DVR in the home.
       
       
       

Video Operator Benefits:


--  Wi-Fi-delivered video gives service providers the unique advantage of offering consumers new freedom to watch TV wherever they want in the home.

--  With no added wiring required, Cisco's wireless TV solution offers service providers the means for faster service activations and consumer self-installation with easy-to-use WiFi kits.

--  Integrating WiFi technology into the receiver is a more cost-effective option for service providers, as it gives technicians the ability to install receivers without running new wires. The integrated WiFi receiver also offers service providers the ability to monitor the device's performance via the network, as the receiver comes equipped with remote diagnostics.

--  Cisco's solution is based on the 802.11n standard, and includes enhancements to manage the demanding requirements of delivering high-quality, highly secure video over Wi-Fi.

Embedded Videos:


        
        --  Cisco Demos Industry's First Integrated Wireless TV Solution



        
 
http://www.youtube.com/v/QbuosyYIdew


                    
 
http://www.youtube.com/v/lSodIFjgzt8



     

My Blog List

Networking Domain Jobs